
DistriNet

SECAPPDEV 2008
Security Architectures

Riccardo Scandariato

Wouter Joosen

DistriNet2

Architecture

ArchitectUsers Developers

Software

Architecture

Software

Product

Creates

Prescribes

Requirements

Prescribes

CreatesCreates

DistriNet3

Iterative
Software Development

Software
Concept

Requirements
Analysis

Design of
Architecture

Design and
Implement a

Version

Test and
Deliver the

Version

Introduces various
feedback loops

An idea why we ended up with
eXtreme Programming?

DistriNet4

Software Architecture
Sign off

Software
Concept

Preliminary
Requirements

Analysis

Design of
Architecture

Develop a
Version

Incorporate
Customer
Feedback

Deliver the
Version

Elicit
Customer
Feedback

Deliver Final
Version

DistriNet5

The play

o Act I – Prologue
• Introduction to Software Architectures

o Act II – Security on stage
• Security Architectures with Patterns

o Final rehearsal
• A case study

DistriNet

Act I
Software Architectures

DistriNet7

Objectives

o What is Software Architecture?

o Why is Software Architecture important?

o How to Create Software Architecture?

o How to Evaluate a Software Architecture?

DistriNet8

Is this an architecture?

Document

Source

Document

Registry

Document

Consumer

Document

Repository

Boxes and arrows

DistriNet9

Definition of Software Architecture

The software architecture of a program or
computing system is the structure or

structures of the system, which comprise
software elements, the externally visible

properties of those elements, and the
relationships among them

DistriNet10

Other Definitions

“Architecture is the fundamental organization of a
system embodied in its components, their
relationships to each other and to the environment
and the principles guiding its design and
evolution”[IEEE 1471]

Maier, M. W., Emery, D., and Hilliard, R. 2004.
ANSI/IEEE 1471 and systems engineering. Syst.
Eng. 7, 3 (Sep. 2004), 257-270

What?

DistriNet11

Importance of architecture
Reconcile stakeholders

DistriNet12

Importance of architecture
Impact on requirements

Twin Peaks

DistriNet13

Creating software architectures

o Architectures are largely influenced by
software qualities (non functional
requirements)

o Software qualities
• Performance

• Modifiability

• Availability

• Security

DistriNet1414

Creating SA
Quality Models

o How achieve software quality?
• Understand what quality means: quality model

• Verify that quality is achieved: measure

o Quality Model
• ISO9126, Boehm, etc

DistriNet1515

Creating SA
Quality Model

Product
Operation

Product
revision

Usability

Reliability

Efficiency

Reusability

Maintainab
ility

Portability

Testability

Communicativeness

Accuracy

Consistency

Device Efficiency

Accessibility

Completeness

Structuredness

Conciseness

Device
Independence

Legibility

Self-descriptiveness

Traceability

METRICS

Important High
Level Quality Factors

Low Level Criteria

DistriNet16

Creating SA
Attribute-driven design

• A recursive decomposition process where, at
each stage, tactics and architectural patterns
are chosen to satisfy a set of quality scenarios
and then functionality is allocated to
instantiate the module types provided by the
pattern.

DistriNet17

Creating SA
Quality attribute scenario

Source:
Developer

Stimulus:
Wishes to
change the UI

Artifact:
Code

Environment:
At design time

Response:
Modification
is made with no
side effects

Response
measure:
In 3 hours

Tactics to
Control

response

DistriNet18

Creating SA
Tactics & patterns

Bass, Clements,

Kazman
Qualities

Security
tactics

…

Resisting Attacks
- Authenticate Users
- Authorize Users
- Maintain Data

Confidentiality
- Maintain Integrity
- Limit Exposure
- Limit Access

Detecting
Attacks
- Intrusion
Detection

Recovering
from Attacks
Restoration:
(see Availability)

Identification:
- Audit trail

Pattern

DistriNet19

Creating SA
Algorithm

1. Choose the module to decompose

2. Refine the module
a) Choose architectural drivers

b) Choose architectural patterns (from strategy)

c) Instantiate child modules and allocate
functionality (from use cases). Document in
multiple views

d) Gap analysis

3. Repeat

DistriNet20

Documenting SA
Architectural Views

o Views on human body

o An architectural view is a simplified
description (abstraction) of a system
• From a particular perspective

• Covering particular concerns, and

• Omitting entities that are not relevant to this
perspective

DistriNet21

Documenting SA
Architectural Views

o At least
• Decomposition

• Interaction

• Deployment

o Mapping between views
• Important

• Hard

DistriNet22

Documenting SA
Decomposition

DistriNet23

Documenting SA
Interaction

DistriNet24

Documenting SA
Deployment

Vocal

gateway

Cisco 3640

Application

Server

BarFoo

LAN connection

LAN

Client
Client

Device

Server

DistriNet25

Evaluating SA
Motivation

o Creating the “right” system for a set of given
requirements is still a general problem in
software system development [SEI]

Analyze
Business

Goals
Architect

Require
ments

Design
Archit
ecture

Implement
System
Design

Test
System

Impleme
ntation

Syste
m

Mismatch

DistriNet26

Evaluating SA
Boehm costs of change

DistriNet27

Evaluating SA
Motivation

P. G. Neumann, Computer-Related Risks. Addison-Wesley, 1995

DistriNet28

Evaluating SA
Output

o Is this architecture suitable for the system for
which it was designed?
• Resulting system will meet quality goals

• System can be built using available resources

o Architectural risks
• What are the weak points of the architecture?

o Architectural trade-offs
• Choices are made explicit

DistriNet29

Evaluating SA
Who’s involved?

o Evaluation Team

• Team leader

• Evaluation leader

• Scenario Scribe

• Proceedings Scribe

• Timekeeper

• Questioner

o Customer Roles

• Decision Maker

• Software Architect

• Other stakeholders

DistriNet30

Evaluating SA
Architectural approaches

o Examples
• Used a layered architecture

• Use of distributed data

o I.e., architectural styles (patterns)

o Examples in security
• Use of interception

• Use of process separation

• Use of single access point

DistriNet31

Evaluating SA
Elicit and prioritize scenarios

Importance

Difficulty

H

H

M

M

L

L

Do these first

If time permits, do these

Do not do these

DistriNet32

Evaluating SA
Analyze

Scenario A8.1 Search, browse, and order submission is
down less than 1 hour/week

Attribute Availability

Architectural approaches Risk Tradeoff Nonrisk

AD9 Backup copy of database on tape
(not disk)

R9

R9. Recovery from tape can take more than 1 hour in case of large amount of

data

DistriNet

Act II
Security Architectures

DistriNet34

Objectives

o What Are Security Patterns?

o How to systematically bridge from security
requirements (problem domain) to security-
aware software architecture (solution
domain)?

DistriNet35

Security patterns

o A (security) pattern describes… *Doug Lea+

• a single kind of (security) problem

• the solution as a constructible software entity

• design steps for constructing the solution

o Potential helpful tools to implement security

Well-known (and sound) solution for a recurring security
problem, whose pros & cons are known in advance

DistriNet36

Example: Audit Interceptor

o Stucture

Audit Eve nt Catalog

Audit Inte rce ptor

Audit Log

Targe tClie nt send s forwa rd s

uses log s

DistriNet37

Example: Audit Interceptor

o Sequence Diagram
: Audit Ev ent Catalog: Audit Interce ptor : Audit Log : Targe t: Clie nt

loo kup2:

log3:

forwa rd4:

loo kup6:

log7:

8:

reply5:

request1:

DistriNet38

Existing inventories

o Markus Schumacher, et
al, Security Patterns:
Integrating Security and
Systems Engineering

o Christopher Steel, et al,
Applied J2EE Security
Patterns: Architectural
Patterns and Best
Practices

DistriNet39

Security patterns landscape
Data set

o 38 publications

o 218 patterns

o 1996-2006

trigger

inflated

expectations

disillusion

enlightenmentAbstraction level
Overlaps

Quality issues
No structure

DistriNet40

Security patterns landscape
Quality

o Grade pattern elements
• Problem

• Structure

• Behavior

• Consequences

• Example

Q = Σ wi

si

max

DistriNet41

Problems & our approach
o Quality & quantity:

• Not all published patterns are actual patterns

• Overlapping/duplicate descriptions

• Descriptions are lacking in detail

• Essentially: too many unstructured patterns

o How to choose and implement the right pattern?

• … reading them all?

 done that, not recommendable ;)

o Our approach:

• Collect good patterns in a structured inventory

• Integrate selection in software engineering process

DistriNet42

Security patterns catalog
Overview

o Abstraction level

• Categorization

o Quality

• Template

o Overlaps

• Grouping

o No structure

• Inter-pattern relations

o Support for
methodology

• Security objectives

• Trade-off labels

DistriNet43

Security patterns catalog
Categorization

Locality principle

Code required

DistriNet44

Security patterns catalog
Relations

Depends on

Conflicts with

Alternative

Benefits from

Impairs

DistriNet45

Security patterns catalog
Relations – In practice

A,C

I

B

B

D

DDemilitarized Zone

Secure Pipe

Load Balancer

Audit Interceptor

Authentication Enforcer

Limited View

Full View with Errors

System

Application Architecture

Application Design

A,C

B

DistriNet46

Data Confidentiality

Application Confidentiality

Storage Confidentiality

Transmission Confidentiality

Authorization †

Confidentiality

Non-repudiation

Auditing

Requires authentication ‡

Accountability

Data Integrity

Application Integrity

Storage Integrity

Transmission Integrity

Authorization †

Authorization †

Integrity

Anonymity

Privacy

Availability

Requires authentication ‡

† Authorization ‡ Authentication

Security patterns catalog
Objectives

DistriNet47

Security patterns catalog
Objectives – In practice

DistriNet48

B
u

sin
e

ss
Security patterns catalog

Trade-off labels
Se

cu
rity

O
b

je
ctives
C

C
IS

O
 9

1
2

6

– Dependability

– Portability

– Maintainability

– Performance

– Usability

– Manageability

– Auditability

– Confidentiality

– Integrity

– Accountability

– Availability

– Cost

Denote strong points and weaknesses, e.g. Audit Interceptor:

- Performance

+ Accountability

DistriNet49

Security patterns catalog
Bringing it togetherPattern Name

Intent

Also known as (optional)

Applicability

Security objective

Labels

Relationships

• Dependencies

• Impairments

• Conflicts

• Benefits

• Alternatives

1. Problem

• Forces

2. Example

3. Solution

• Structure

• Dynamics

• Participants

• Collaborations

4. Implementation (optional)

5. Pitfalls (optional)

6. Consequences

7. Related patterns

8. Known uses

o Purpose: uniformly
describing patterns

o Ensures that all
relevant data is
included

o Summarizes
information for quick
selection

DistriNet50

Attribute-driven design

Pattern

Main Security
Objective

Performance

Availability

Security

Labels:

Bass, Clements,

Kazman

Our approachQualities

Security
tactics

…

Resisting Attacks
- Authenticate Users
- Authorize Users
- Maintain Data

Confidentiality
- Maintain Integrity
- Limit Exposure
- Limit Access

Detecting
Attacks
- Intrusion
Detection

Recovering
from Attacks
Restoration:
(see Availability)

Identification:
- Audit trail

Pattern

DistriNet51

Methodology
Analysis

Domain
model

Functional
Requirements

Analysis

Architecture

Security Requirements

• Using misuse cases

• Categorized by security

objective(s)

DistriNet52

Methodology
Architecture (inspired by ADD)

Architecture

Initial
architecture

Quality
attributes

Select patterns
from catalog

Tradeoff
using labels

Check Conflicts,
Dependencies, Benefits, …

using relationships

A
requirement

Analysis

DistriNet53

Methodology
Experimentation

Functional
components

MUCs Patterns
Extra

components

Calendar 2 5 5 2

ATM 5 8 9 10

E-health 7 92 13 10

Digital Publication System: new experiment this year,

with students (including evaluation)

DistriNet

Final rehearsal
Case study

DistriNet55

E-Health Information Platforms

o Distributed health-care providers in Flanders
• Hospitals, general practitioners, others

• Large amount of data and proprietary systems

o Federated IT infrastructure
• Enables smooth collaboration

• Patient-centric

• Access to data anytime, anywhere

DistriNet5656

E-HIP: example scenario

Radiology

Center

Screening

Center

General

Practitioner

E-HIP platform

Ms. Smith

1
2 3 4

5visit

Upload

pictures +

first

reading

Download

pictures +

first

reading

Upload

second

reading +

report Download

report

Mammo screening

DistriNet5757

IHE-XDS
Reference model

Patient

Identity

Source

Document

Registry

Document

Source

Document

Repository

Document

Consumer

N

N

N

N

1

search

upload view

DistriNet5858

Methodology
Start with initial architecture

Local
identity
provider

Repository

Hospital Leuven Hospital Antwerp

Hospital

employee Hospital

terminal

Local
identity
provider

Repository

Hospital

employee Hospital

terminal

E-HIP
gateway

E-HIP
registry

E-HIP
portal

Local
identity
provider

E-HIP

MPI

Government

DistriNet5959

Security analysis
Architecture level

o Threat modeling using STRIDE
1. Model architecture as Data Flow Diagram (DFD)

2. Determine threats by using STRIDE

– Spoofing

– Tampering

– Repudiation

– Information disclosure

– Denial of service

– Elevation of privilege

M. Howard and S. Lipner, The Security Development Lifecycle.

Microsoft Press, 2006.

DistriNet6060

DFD

Health Care

Institution Employee Metadata Portal data
User

Clinical data

Provides

terminal

interface

Provides

access

to data

Processes

search

queries

Provides

application

interface

Provides

user

interface

Provides patient ID data

Service data stream

Up-/download

images and

documents

Download images and

documents data

stream

Upload images and

documents data

stream

Patient ID

data feed

stream

Upload

metadata

stream

Query/response

data stream Query/response

data stream
Service data

stream

Government

InternetE-HIPHospital(s)

DistriNet61

Security analysis
Results

o 86 MUCs

o Security assumptions, architectural similarities

• No-deletion policy

• Reuse solution for repository (data) to registry (meta)

o 14 MUCs left

o Gap analysis (business level misuse cases)

• Consider how XDS/EHIP functionality can be misused

o 6 additional MUCs

DistriNet6262

Memo

1. Start with initial architecture

2. Tag MUC’s with security objective(s)

3. Prioritize security objectives

4. Select security objective from prioritized list
a. Select pattern associated with objective

i. Trade-off based on quality labels

ii. Take into account benefits, dependencies, impairments and
conflicts

iterate

iterate

DistriNet63

Labeling MUCs

Threat Mitigation Feature

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation

Information Disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

DistriNet64

Initial architecture

o Important qualities: manageability and auditing

o First security objective: confidentiality
• Is composed of controlled access and secure data

transmission

• We start with controlled access

uploads

meta-data

DistriNet65

Example
E-health platform

Confidentiality

Authorization

Secure data transmission

Select Authorization Enforcer

Header, Labels, Description

Benefits: Secure Service Facade, AuthN Enforcer

Authentication

Select AuthN Enforcer

Header, Labels, Description, Benefits

Benefits: Secure Service Facade

Select Secure Service Facade

DistriNet6666

Identification & authorization

Firewall
facade

Authorization Enforcer

Authentication Enforcer

repository

registry server

Secure Pipe

Secure Service Facade

Application Firewall

Credential Tokenizer

Secure Pipe

registry server

1. Need for

authorization

2. Beneficial for

authorization

enforcer

3. Beneficial for

authorization enforcer and

authentication enforcer

4. Need for

identification

5. Need to filter

requests

(different types of

users)

6. Need for message

integrity

Example
E-health platform

DistriNet67

E-Health platform
Final architecture

DistriNet

SECAPPDEV 2008
Security Architectures

Riccardo Scandariato

Wouter Joosen

DistriNet69

For further reading

o Software Architecture

• [SEI] Bass, L. Clements, P. and Kazman, R. 2003 Software Architecture in Practices.
Addison-Wesley, 2003

• [Shaw] M. Shaw, and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996

• [TwinPeaks] B. Nuseibeh, Weaving Together Requirements and Architectures.
Computer 34:3, March 2001, pp. 115-117.

o Documenting Software Architecture

• [Doc] Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., and Little, R.
2002 Documenting Software Architectures: Views and Beyond. Pearson
Education.

• *Views+ Kruchten, P. “The 4+1 View Model of Architecture,” IEEE Software 12(6),
1995

• [Notations] N. Medvidovic, and R.N. Taylor, A Classification and Comparison
Framework for Software Architecture Description Languages. Technical Report
UCI-ICS-97-02, University of California, Irvine, January 1997

DistriNet70

For further reading

o Architecture Evaluation

• [Survey] Dobrica, L.; Niemela, E., "A survey on software architecture analysis
methods," Transactions on Software Engineering , vol.28, no.7, pp. 638-653, Jul
2002

• *ATAM+ P. Clements, R. Kazman, M. Klein “Evaluating Software Architectures”,
Addison-Wesley, 2002

o Security patterns

• [Analysis] Thomas Heyman, Koen Yskout, Riccardo Scandariato, Wouter Joosen,
An Analysis of the security patterns landscape, IEEE Workshop on Software
Engineering for Secure Systems (SESS), Minneapolis, MN, USA, May 2007

• [Catalog] Koen Yskout, Thomas Heyman, Riccardo Scandariato, Wouter Joosen, A
system of security patterns, K.U. Leuven Technical Report CW469, December
2006

• [Methodology] Koen Yskout, Thomas Heyman, Riccardo Scandariato, Wouter
Joosen, Security patterns: 10 years later, draft paper

